
MASTERING
PRODUCT
DEVELOPMENT

https://productfolio.com
https://productfolio.com
https://productfolio.com
https://productfolio.com
https://productfolio.com
https://productfolio.com
https://productfolio.com
https://productfolio.com
https://productfolio.com
https://productfolio.com
https://productfolio.com
https://productfolio.com
https://productfolio.com
https://productfolio.com
https://productfolio.com
https://productfolio.com
https://productfolio.com
https://productfolio.com
https://productfolio.com
https://productfolio.com
https://productfolio.com
https://productfolio.com
https://productfolio.com
https://productfolio.com
https://productfolio.com
https://productfolio.com
https://productfolio.com
https://productfolio.com
https://productfolio.com
https://productfolio.com
https://productfolio.com
https://productfolio.com
https://productfolio.com
https://productfolio.com
https://productfolio.com
https://productfolio.com
https://productfolio.com
https://productfolio.com
https://productfolio.com
https://productfolio.com
https://productfolio.com
https://productfolio.com
https://productfolio.com
https://productfolio.com
https://productfolio.com
https://productfolio.com
https://productfolio.com
https://productfolio.com
https://productfolio.com
https://productfolio.com
https://productfolio.com
https://productfolio.com
https://productfolio.com
https://productfolio.com
https://productfolio.com
https://productfolio.com
https://productfolio.com
https://productfolio.com

TABLE OF CONTENT5

1. Introduction …………………………………………………………….…… 3

2. What is Product Development? …………………………………. 4

3. Roles in Agile/Scrum …………………………………………………. 10

4. Creating a Feature …………………………………………………….. 17

5. Writing Requirements …………………………….…………………. 23

6. Managing the Backlog ……………………………………..………. 32

2. Conclusion ………………………………………..………………….….. 39

We’re so glad you’ve downloaded this ebook! Let us quickly
introduce ourselves before jumping in.

Productfolio creates amazing Product Management software,
so your team can focus on creating amazing products. We’re
passionate about the craft of Product Management and have
learned from interviewing hundreds of Product professionals,
that every team is a little bit different, but most successful
teams share a core set of patterns and principles.

We hope these insights are helpful and love to hear from you
if you have feedback or questions about this content herein,
or our platform (hello@productfolio.com).

Happy Product’ing!

Neal

https://productfolio.com
https://productfolio.com
https://productfolio.com
https://productfolio.com
https://productfolio.com
https://productfolio.com
https://productfolio.com
https://productfolio.com
https://productfolio.com
https://productfolio.com
https://productfolio.com
https://productfolio.com
https://productfolio.com
https://productfolio.com
https://productfolio.com
https://productfolio.com
https://productfolio.com
https://productfolio.com
https://productfolio.com
https://productfolio.com
https://productfolio.com
https://productfolio.com
https://productfolio.com
https://productfolio.com
https://productfolio.com
https://productfolio.com
https://productfolio.com
https://productfolio.com
https://productfolio.com
https://productfolio.com
https://productfolio.com
https://productfolio.com
https://productfolio.com
https://productfolio.com
https://productfolio.com
https://productfolio.com
https://productfolio.com
https://productfolio.com
https://productfolio.com
https://productfolio.com
https://productfolio.com
https://productfolio.com
https://productfolio.com
mailto:hello@productfolio.com?subject=Ebook%20Feedback

 1.
 WHAT IS
 PRODUCT
 DEVELOPMENT?

WHAT IS PRODUCT DEVELOPMENT?
Product Development is a complex topic that has evolved over
the past couple of decades. We’ll review those processes, the
most common standards used today, and the roles and
responsibilities of Product and the rest of the team.

Once we’ve covered these concepts, we’ll walk through the
discovery, development, and deployment steps of developing
a new feature, to give a sense of how it all comes together.
Let’s get started!

DEVELOPMENT PROCESS

Software development processes has evolved over the past
50 years, in part learning what works best for developing
software, and because the delivery model has shifted from
products on shelves, to online delivery, that enable a more
incremental approach.

In the 1960s, Waterfall methodology was the dominant
approach. There was a series of distinct “stage gated” steps
and one must be completed before proceeding to the next.

First requirements needed to be completed, then design, then
development, validation, and finally release. The approach
resembles an assembly line that can maximize the efficiency
of resources when developing a known commodity.

Unfortunately, there’s also a downside – because of the stage-
gated approach, practitioners and project managers would try
to minimize having to go backwards in those steps, leading to
perfectionism and trying to account for every detail before
proceeding to the next stage. This inevitably slowed the whole
process down and increased the cost for getting anything
completed.

In the 1990s, a number of contrarian processes like Rapid
Application Development (RAD), and Extreme Programming
(XP) began to emerge, which proposed another approach to
development that was more lightweight and iterative in
nature. And in 2001, a number of software engineering
leaders met on a retreat to establish the Manifesto for Agile
Software Development.

This was the beginning of Agile Development, which put
people over process, working software over documentation,
and responding to change over simply following a plan. In the

subsequent years, Scrum became the most common Agile
Project Management process, and teams begin working in 2-
week increments, and learning how to develop requirements
and design, in parallel to development and release efforts.

A decade later in the 2010s, Lean product development rose
to popularity and built on top of Agile for those just learning
about it. Whereas Agile is about developing increments of
software and delivering them quickly, Lean is about discovery
increments and provides a methodology for efficiently
achieving product-market fit.

Lean introduced the idea of a Minimal Viable Product (MVP)
and espoused the goal of getting to product-market fit as
quickly and efficiently as possible, with minimal waste. This is
a natural complement from the Product discovery perspective,

to Agile in the product development perspective. The rapid
build>measure>learn loop provides a recipe for discovering
and building value through an Agile development pipeline.

Today, there are any number of combinations of these
processes in practice across the industry. For the most part
the industry has shifted toward Agile thinking, though many
organizations will practice some hybrid of Agile and Waterfall
(aka “Wagile”). There are even frameworks for formalizing
that hybrid like the Scaled Agile Framework (SAFe).

The truth is, there is no perfect process, and each one of them
has their strengths and weaknesses – it’s just a question of
what we want to optimize for. Since most organizations do
recognize some flavor of Agile/Scrum as the basis for their
product development, we’ll use that as a point of reference for
the rest of this discussion.

 2.
 ROLES IN
 AGILE / SCRUM

ROLES IN AGILE/SCRUM
There are three key roles to know about in Agile/Scrum: the
Product Owner, ScrumMaster, and the team. The Product
Owner “owns” the backlog, providing requirements and priority
to the team.

THE

PRODUCT OWNER

The Product Owner works with one foot outside of the team,
understanding needs, opportunities, and priorities, and then
communicating that back to the team.

In the context of Product Development, the Product Owner is
often a member of the Product Management team and thus
spending a good amount of time working with customers and
business stakeholders to understand all aspects of the
functional outcome that must be achieved with the solution the
team is working on.

This is often expressed as a collection of requirements, stated
in the form of User Stories, and accompanied by a set of
Acceptance Criteria that must be met by the solution, which is
designed by the team.

Put another way, the Product Owner will represent the
problem, and the cross-functional team, will design the
solution. In this context, it is sometimes said that Product
works in the “problem space” whereas the team (Engineering,
UX, Data, etc) work together in the solution space.

The Product Owner is responsible for determining the “what &
why”. The team, led by the ScrumMaster, owners Delivery
and determines how to solve the problem and how long that
should take. Release/launch plans are determined together
by the Product Owner and ScrumMaster, based on the desires
of Product and the capabilities of the team.

SCRUMMASTER

The ScrumMaster is the administrator, leader, and protector of
the team. They ensure the team follows best practices,
updating tickets, ensures the team is working efficiently toward
priorities, and not committing too much.

The ScrumMaster can be anyone on the team, though it is
often an Engineering team lead. Or, when the team is large
and truly cross-functional with a lot of non-engineering
capabilities represented, there may be a Program Manager in
that case who plays this role and facilitates the team, and
ensures Scrum best practices.

A Program Manager is a process and delivery efficiency
expert, who may play this role for multiple teams within a
focus area, keeping the teams coordinated, aligned, and
running smoothly.

TEAM

The team is composed of a group (ideally 5-8) of cross-
functional members that span all of the capabilities necessary
to complete the requirements from Product. For example, if
the team is building a SaaS product, you’d ideally have
WebApp developers, mobile app developers, UX, and QA on
one team.

In the case of a larger team working on a more sophisticated
application, you might have multiple scrum teams each
working on specific features of the application – these teams
are sometimes referred to as feature teams, and similarly you
would have the capabilities represented that are required for
that feature.

If the team was working on the search & personalization
algorithms then you might have a data scientist on the team
and API developers rather than WebApp and UX.

RESPONSIBILITY OF ROLES
The strength of Agile development is flexibility and agility but
this can also sometimes be its weakness. Everyone interprets
roles and responsibilities a little bit differently which can lead
to confusion, gaps where things aren’t accounted for, and
overlaps that can lead to toe stepping and politics.

It can be really helpful to discuss expectations about roles and
responsibilities as a team from the outset, to avoid such
issues and make sure expectations are aligned.

The DACI model is a useful framework for aligning those
expectations. DACI is an acronym and stands for Driver,
Approver, Contributor, Informed. The goal with this framework
is to identify activities of the team, and map the responsibility
for each of these activities, for each of the roles.

For example, the Product Owner is Driving requirements
definition, though the team may contribute insights to Product
where it is helpful. There shouldn’t be anyone on the team
who needs to Approve the requirements, though it’s possible a
Business or Product leader outside of the Scrum team may
practice some level of oversight.

And, the ScrumMaster would be kept informed of the
requirements as they enter the Scrum team, so they can
manage the team’s activities against them, accordingly.

Here is an example table that maps the common activities and
responsibilities as reference.

 3.
 CREATING A
 FEATURE

CREATING A FEATURE
Now that we have established processes, roles, and
responsibilities, let’s walk through the process of creating a
new feature to see how it all comes together.

Assuming we have already defined the feature requirements
(User Stories), then we’re ready to engage the team on the 3
high-level stages of feature development – Discover, Develop,
and Diagnose.

DISCOVERY

The product requirements that we wrote for this feature, in the
form of User Stories, describe the problem we need to solve,
and include acceptance criteria that indicate the bounds of an
acceptable solution.

We intentionally take this approach and avoid prescribing a
solution in the requirements, in order to facilitate solution
design by the team – that process begins with learning more
about the context of the problem, in order to design an
effective solution.

In the case of a workflow feature, Product may partner with
the UX designer to conduct user research, observe the
difficulty, and validate prototypes of a possible solution.

Or, in the case of a search algorithm, Product may partner
with the Data Scientist on the team to review data and better
understand the insufficiency of the algorithm.

In both cases the approach is similar – Product partners with
the capability expert on the team to do discovery and better
understand the problem, handing off to the team member(s) to
design the solution, and approving the design once
completed.

DEVELOPMENT

Once Discovery is complete, the User Story is taken to the
next backlog grooming session where the team will break
down the solution into sub tasks that must be done in order to
build that solution.

The Product Owner supports this process by answering
questions and providing clarity where it is needed, and
working with the team to determine the release plan for the
feature (timeframe, A/B testing, etc). From there, the Product
Owner becomes more passive until we’re nearing time for
feature deployment.

The primary responsibility of the Product Owner during the
Development stage, is Discovery on the next feature, so that it
is ready for Development when the team is done developing
this feature.

In Agile/Scrum process, Discovery can be thought of as a
track of work that happens in parallel to Development – a
concept sometimes referred to as Dual Track Scrum.

PROCESS ANTI-PATTERN

A word of caution – it can be tempting to insert yourself into
the day to day activities of your team during development;
more than one Product Owner has succumbed to day-to-day
need for administration and coordination by the team.

Don’t do it! These are the responsibilities of the ScrumMaster
and spending your limited time here may seem like the right
thing to do, but it will abdicate your core Product responsibility
and earn you more responsibility as a Project/Program
Manager, rather than Product Manager.

Remember, your core responsibility is to ensure your features
are useful, usable, and valuable to the customer.

DEPLOY

Whenever possible, features should be deployed as a limited
availability test (eg Alpha, Beta), so impact can be measured
and evaluated before full availability of the feature.

When the feature is not performing optimally, or in the case of
an MVP release, this can lead to a sub-stream of additional
work in the coming sprints that we’ll balance with other feature
development, in order to ensure we perfect the feature before
calling it ‘done’.

Remember that as Product, we measure success by the
outcome of our work against our objectives & KPIs, not merely
the delivery of a feature.

 4.
 WRITING
 PRODUCT
 REQUIREMENTS

WRITING PRODUCT REQUIREMENTS
Now that we’ve covered process, roles and responsibilities,
let’s dive into a key deliverable of the Product role:

Requirements provide an outline of an acceptable solution for
the team that is building features for the product. Designers
create an experience, Engineers develop systems, and Data
Scientists create predictive models to solve the problems that
have been prioritized and defined by Product.

When done well, a requirement is not prescriptive – Product
works in the “problem space” to understand the problem and
what a viable solution should be, and it Is the team who works
in the “solution space” to then design that solution to the
defined problem.

Requirements define specific aspects of a solution, Product or
Feature. More often than not, a Requirement describes a
dimension of a new feature the team is working on for the
Product.

Requirements can either be ‘loose leaf’ and describe small
improvements to existing functionality, or can be part of a set
of requirements defined in a project (aka product brief).

WHAT IS A PROJECT?
A project is something typically 1-3 months in scope that might
be prioritized on a roadmap. In Agile/Scrum terminology this
might be called an Epic.

During roadmap planning, we might call this a roadmap
candidate since it is being considered for prioritization and
thus inclusion on the roadmap. Once it is approved as part of
the plan and becomes an actionable piece of work however,
we begin referring to it as a Project (or Epic).

There are two types of projects generally – Feature Projects
and Capability projects. Feature Projects are useful and
usable to the user, and Capability Projects introduce new
capabilities to the platform/system, that future features can be
built upon.

For the most part in Product Development, you’ll be working
on Feature Projects, but it is good practice to work with your
technical partners and set aside bandwidth for those enabling
capabilities.

PROJECT DEFINITION (A PRODUCT BRIEF)
Unlike how most Scrum teams use Epics as merely containers
for related User Stories, Product Management needs to do
real work to define the feature at this level.

A feature is more than just a collection of requirements – there
is context and purpose that is greater than the sum of its parts,
and articulating that is helpful both for clarifying one’s thoughts
and communicating that to the team for alignment.

As Dave McCullough eloquently put it “Writing is thinking. To
write well is to think clearly. That’s why it is so hard”.

And so, let’s think about this in terms of defining a feature.
We’ll want one document to serve as a “single source of truth”
reference doc, that the team can easily find and reference.
We’ll want to keep it concise but offer the following basic
information:

PRODUCT BRIEF, NOT A PRD
If we go back to Waterfall development in the 1970s, it was
common to have a very thorough Product Requirements
Document (PRD) created before any development work could
begin – and that’s still the case for many physical projects in
fact such as buildings or rocket development.

It makes perhaps sense when we have high confidence in
what needs to be built and the cost of mistakes are high.

But this is not how modern software development works.
Because it is so easy to push updates out to users, it is very
easy to deploy variations to test and learn, as well as it is is

easy to fix issues. For this reason, most software
development has moved away from Waterfall and toward
Agile.

That doesn’t mean there is no value in crystallizing the context
and purpose at a feature project level however – quite the
contrary!

The answer is to find the middle-ground with a lightweight
“product brief” that provides context for the team and concisely
captures the key points as a way of defining the problem
space (goals, needs, high-level requirements), but without
holding things up since a lot of discovery can be done
concurrent to development, and not encroaching upon the
team’s agency to create a solution.

Here’s a simple list of content you might consider including in
your product brief:

• Summary – a paragraph synopsis synopsis.
• Discussion – a deeper conversation about the nuances,

logical rules, and context of this feature.
• Goals - human language definition of the outcomes and

metrics for measuring success.
• Design – UI flows and mocks that describe the user

experience for the solution. Note – this may not be in the
initial iteration of the document but something you layer
in after working with UX.

• Requirements – list of high-level requirements / user
stories that define the bounds of a solution.

TYPES OF REQUIREMENTS
In traditional Business Analysis, there are many types of
requirements – Functional Requirements describe a technical
perspective, Non-Functional Requirements describe an
internal process such as QA against those functional

requirements, Business Requirements describe an
expectation of internal business stakeholders, and yes,
User Requirements which describe external user needs.

USER STORIES

Consistent with the philosophy of Agile, User Stories are
intentionally non-prescriptive for the team, and merely
describe a scenario to inform the team during solution design.

They are usually written in the form of: “As a [who] I want
[what] so that [why]”. For example, “As a customer I want to
see recent orders in my account so that I can track the order
and know when it will arrive.”

Optimal User Stories follow the INVEST principles which
means they’re independent from one another (no
dependencies), independently negotiable and valuable,
specific enough that the team can estimate them with story
points, small enough to complete within a single sprint and
testable/verifiable through QA processes, that are typically
keyed from your acceptance criteria.

In addition to a user story, some choose to include a
acceptance criteria for additional depth. Acceptance criteria
often a simple bulleted pointed list of details that must be true
for the solution to be “accepted” and the User Story to be
marked as done.

Using that same User story example, we might write
acceptance criteria that say: (i) must include purchase mount,
(ii) must include all orders from past 24 months, and (iii) must
indicated if order was fulfilled or is still out for delivery.

The following template can be useful for defining these
requirements.

MANAGING THE BACKLOG
The Product Backlog is where all the requirements come
together for prioritization. Once you’ve created a couple of
projects, you might have a dozen or two requirements from
those sources.

That’s not the only source of requirements though – they can
come in the form of “loose leaf” continuous improvements, A/B
testing hypotheses, support requests from stakeholders,
technical stories to refactor, or any number of other sources.
Ultimately all of these requirements come together in a single
backlog for prioritization.

 6.
 MANAGING THE
 BACKLOG

PRIORITIZING THE BACKLOG
It is good to have a time allocation model in mind, that budgets
your time for the upcoming sprint. For example, a good rule of
thumb might be to spend 60% of your time on those projects
that are on your roadmap, and set aside 20% for continuous
improvement activities such as A/B tests and refining the UI,
10% for tech debt or other tech initiatives, and 10% for support
activities such as stakeholder requests.

The time allocation model is going to be different for every
organization, but defining and aligning on that ahead of time
will prevent a lot of difficult conversations down the road as
well as ensure you’re staying true to your longer-term goals
and responsibilities.

RELEASE PLANNING
Release planning is the process of determining how a new
feature will be made available to the user. Since features are
meaningful functionality for the user that is useful, usable, and
valuable to the customer, it is often an aggregation of
requirements user stories that spans multiple sprints. As
such, Product needs to work with its technical partners to
devise a plan for how to release this feature.

Every team has a little bit different release process – some
use a “release train” every few weeks in which all features that
are for a release must be readied on the same cadence in
order to catch that next ‘train’. In other cases, a team may
practice Continuous Deployment, meaning Stories are
released incrementally, as they are completed.

In both cases though, completion of an individual
requirement / user story doesn’t necessarily mean the full
feature that is valuable to a customer is ready to be released
for use. Internal teams can also be caught off guard and not
ready to support the new feature. Not considering this and
indiscriminately releasing every increment directly to the
customer can be frustrating for everyone involved.

A better approach is to implement a “feature flag” that
suppresses the feature until everything is aligned to provide
the full new increment to the customer. Technical teams can
deploy code in whatever manner works best for them and we
simply “flag on” the feature when it is ready.

To this end, it is wise to plan feature release in advance, so
the user stories can be lined up properly in your development
sprints that follow. This way, every sprint may user stories for
different sub-feature functionality – and the team can deploy
the code at the end of every sprint, if that’s the desire … but
we can hold back the release of a feature until all the stories
for a given feature are completed.

REQUIREMENTS ARCHIVAL
Lastly, it is important to keep track of releases that have
completed and the requirements in each of those, in case you
need to figure out what released in the future.

People can forget why the system behaves the way it does,
and regression testing can omit these requirements from
coverage.

For this reason, it is important that legacy requirements be
discoverable and reference-able after they have gone live.
This enables Product teams can do research and QA teams
can link their tests cases to these requirements.

Teams can also work together on solutions to de-couple the
code release cycle from release of features to users, to ensure
those larger features that require multiple sprints, are ready
before they’re enabled. Product Management plays an active
role in all of this, when playing the Product Owner role for their
Scrum team.

CONCLUSION
Agile/Scrum has become the most popular process for product
feature development. The role of the Product Owner in Agile/
Scrum is often played by a member of the Product
Management team who works closely with the product
development team(s) to discover, deliver, and optimize
features.

The Product Owner plays an active role by writing
requirements that frame the problem/need, often in the form of
user stories, so the team can create an acceptable solution.

PRODUCT MANAGEMENT SOFTWARE
Whether you’re a new Product Manager learning the role or a
team leader, seeking to standardize planning for your team,
Product Management software can streamline the process of
planning and enable your team to focus on building great
products. Check out how Productfolio can enable your team
and elevate the craft of Product in your organization.

https://productfolio.com

We create amazing Product Management software so

your team can focus on creating amazing products.

 Try 100% free for 14 days. No credit card required.

https://productfolio.com
https://productfolio.com

